Ward primer sequence (5-3) CGACCAGCGGTACAATCCAT TGGTGGGTCAGC TTCAGCAA TTCGCATGATAGCAGCCAGT GATGTTCTCGGGGATGCGAT TTGTGCAAGAGAGGGCCATT GCCACGACAGGT
Ward primer sequence (5-3) CGACCAGCGGTACAATCCAT TGGTGGGTCAGC TTCAGCAA TTCGCATGATAGCAGCCAGT GATGTTCTCGGGGATGCGAT TTGTGCAAGAGAGGGCCATT GCCACGACAGGT TTGTTCAG CCC TTGCAGCACAAT TCCCAGAG AGC Succinate Receptor 1 Agonist site TGCGATACC TCGAACG TCTCAACAATGGCGGCTGCTTAC GCAAACGCCACAAGAACGAATACG CAGATACCCACAACCACC TTGCTAG GTTCCCGAATAGCCGAGTCA TTGGCATCGTTGAGGGTC T Reverse primer sequence (5-3) CAGTGT TGGTGTACTCGGGG ATGGCATTGGCAGCGTAACG CAAACT TGCCCACACACTCG GGAATCACGACCAAGCTCCA GCTCCTCAACGGTAACACCT CAACCTGTGCAAGTCGCT TT GAATCGGCTATGCTCCTCACACTG GGTGCCAATCTCATC TGC TG TGGAGGAGGTGGAGGATT TGATG ACT TCAAGGACACGACCATCAACC TCCGCCACCAATATCAATGAC TTC TGGAGGAAGAGATCGGTGGA CAGTGGGAACACGGAAAGCJin et al. BMC Genomics(2022) 23:Web page 5 ofFig. 1 A Chloroplasts of tea leaves sprayed with brassinosteroids (BRs) for: A) 0 h showing starch grains (20,000. s: Starch granule. B Chloroplasts of tea leaves sprayed with brassinosteroids (BRs) for: B) three h showing starch grains (20,000. s: Starch granule. C Chloroplasts of tea leaves sprayed with brassinosteroids (BRs) for: C) 9 h displaying starch grains (20,000. s: Starch granule. D Chloroplasts of tea leaves sprayed with brassinosteroids (BRs) for: D) 24 h displaying starch grains (20,000. s: Starch granule. E Chloroplasts of tea leaves sprayed with brassinosteroids (BRs) for: E) 48 h displaying enlarged thylakoids, starch grains, and lipid globules (20,000. s: Starch granule; g: Lipid globulesGlobal expression profile analysis of tea leavesThe samples of fresh tea leaves treated with CAK (0 h soon after BR therapy) and distinctive BR treatment durations (CAA, CAB, CAC, and CAD) were analyzed by RNASeq, and 3 independent repeats had been carried out. The typical clean reads were six.89 Gb in length (Table two), and GC percentages ranged from 43.12 to 44.21 . The base percentage of Q30 ranged from 90.53 to 94.18 , indicating that the data obtained by transcriptome sequencing was of good quality. Around the basis of measuring the gene expression level of each sample, a DEGseq algorithm was applied to analyze the DEGs in fresh tea leaves treated with CAK (BRs for 0 h) and BRs for different durations (CAA, CAB, CAC, and CAD). The outcomes showed that compared with CAK (0 h BR therapy), CAA (spraying BR 3 h) had 1867 genes Reverse Transcriptase Inhibitor drug upregulated and 1994 genes downregulated. CAB (spraying BR for 9 h) had 2461 genes upregulated and 2569 genes downregulated. CAC (spraying BR for 24 h) had 815 genes upregulated and 811 genes downregulated. A total of 1004 genes were upregulated and 1046 had been downregulated when BRs were sprayed for 48 h (CAC) compared using the 0-h BR treatment (CAK) (Fig. 2a). As could be observed from the Wayne diagram (Fig. 2b), there have been 117 DEGs were shared amongst all groups. Compared with CAK, upregulated and downregulated genes accounted for nearly half of your four groups of treated samples. This may be because of the fast stimulation from the expression of some genes soon after the exogenous spraying of BRs plus the consumption of some genes involved in the tissue activities of tea leaves, resulting in the downregulation of expression. Among these, the total quantity of DEGs was the highest in CAB (the sample sprayed with BR for 9 h). The all round trend was that just after exogenous BR spraying, the total quantity of DEGs initially elevated and then sharply decreased. These included substantially upregulated genes that have been associated to BR signal transduction, cell division, and starch, sugar, and flavonoid metabolism such as starch-branching enzyme (BES), Cyc, granule-bound starch synthase (GBSS), sucro.